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ABSTRACT 
 
     Within the field on biomedical engineering, the 
majority of compression research has focused on 
encoding medical images, electrocardiograms, and 
electroencephalograms.  Although long-term 
myoelectric signal (MES) acquisition is important for 
neuro-muscular system analysis and telemedicine 
applications, very few studies have been published on 
MES compression.  This research investigates static and 
dynamic MES compression using the embedded zero-
tree wavelet (EZW) compression algorithm and 
compares its performance to a standard wavelet 
compression technique.  

 
INTRODUCTION 

 
     In a clinical environment myoelectric signals (MES) 
may be acquired for long periods of time and occupy a 
vast amount of storage.  In addition, the transmission of 
these signals for telemedicine applications is time 
consuming for large quantities of data.    Since data 
compression reduces the number of bits required to 
represent information, signals may be stored more 
efficiently, and lower bit-rates and reduced transmission 
time may be attained.     
     Within the field of biomedical engineering the 
majority of compression research has focused on 
encoding medical images, electrocardiograms, and 
electroencephalograms; however, very little literature 
can be found on compressing the MES.  Norris et al. [1] 
and Chan et al. [2] investigated lossy compression of 
steady-state and transient MES using   adaptive 
differential pulse code modulation (ADPCM), the de 
facto standard for voice compression.  Guerrero et al. 
[3] compared the performance of common compression 
techniques, such as differential pulse code modulation, 
multi-pulse coding, and code excited linear prediction to 
transform-based compression techniques, when applied 
to intramuscular and the surface MES.  Wellig et al. [4] 
investigated intramuscular MES compression using a 
modified version of Shapiro’s [5] embedded zero-tree 
wavelet (EZW) compression algorithm. 
     This research investigates static and transient MES 
compression using the EZW compression algorithm and 
compares its performance to a standard wavelet 

compression technique.  For the purpose of this 
investigation, the steady-state MES will be defined as 
the MES produced by an isometric isotonic, or static, 
contraction.  Dynamic MES will be defined as the MES 
produced by an anisometric anisotonic, or dynamic, 
contraction.    
 

DATA COMPRESSION 
 
     Data compression minimizes the number of bits 
required to represent information by reducing the 
redundancy present in the original signal.  The reduction 
in storage requirement is usually expressed as a 
percentage using a figure of merit called the 
compression factor (CF). 
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In (1) Us is the original data size and Cs is the 
compressed data size.  Lossless compression techniques 
attain low CFs and produce decompressed signals that 
are identical to the original data.  Conversely, lossy 
compression techniques attain significantly higher CFs 
and produce decompressed signals that differ from the 
original signal.  The reconstruction error is often 
expressed using a distortion metric called the percent 
residual difference (PRD). 
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In (2) x is the original signal, y is the reconstructed 
signal, and N is the segment length.   
 

TIME-FREQUENCY RESPRESENTATIONS 
 
     Conventionally, signals are transformed to their 
frequency representation using the Fourier Transform 
(FT); however, the FT is limited to the idea that 
frequency does not change with time.  However, for 
signals with time-varying spectral characteristics it is 
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necessary to accommodate the notion that frequency 
changes with time.  Time-frequency representations 
(TFRs) represent signals in a domain that is a hybrid 
between time and frequency, and permit greater insight 
into the temporal variation of the signal’s spectrum to 
be gained.  The short-time Fourier Transform (STFT), 
although it provides both time and frequency 
localization, is constrained in that the time and 
frequency resolution in the time-frequency plane are 
constant.  A fundamental characteristic of the WT is that 
within the time-frequency plane the time and frequency 
resolution can vary.  At low frequencies the frequency 
resolution is good, and at high frequencies the time 
resolution is good.  Therefore, for signals such as the 
MES that have a time-varying spectrum, the wavelet 
domain is often preferable to the Fourier domain. 
 

METHODS 
 
     Four participants were recruited for this 
investigation.  MES was acquired from the biceps 
brachii of the right arm at a sampling frequency of 2 
kHz using a 12-bit analog-to-digital converter.  For the 
steady-state MES acquisition, participants sustained a 
co-contraction of the bicep and tricep muscles for 
twenty seconds while data was acquired.  For the 
dynamic MES acquisition, participants were seated with 
the upper-arm parallel to the torso, the elbow-joint angle 
at 90°, and a 5 lb. dumbbell in hand.  Participants were 
instructed to cyclically contract and relax their bicep for 
twenty seconds at a frequency of 0.5 Hz (2 
seconds/cycle).  A single cycle is defined as a reduction 
in elbow-joint angle to approximately 40° followed by a 
return to the 90° starting position.  The frequency was 
regulated using an electronic metronome comprised of a 
pulse generator driving a speaker.       
     The MES data were compressed using the EZW and 
standard wavelet compression algorithms, described 
below.  
 
Embedded Zero-Tree Wavelet Compression 
     Two distinct properties of the EZW algorithm make 
it an effective means of compression.  First, the EZW 
algorithm exploits the hierarchy of the wavelet 
transform (WT) coefficients, and establishes a 
connection between coefficients from different 
subbands. The WT coefficients are arranged such that 
every coefficient at a given scale, with the exception of 
those coefficients at the lowest scale, can be related to a 
pair of coefficients at the next finer scale.  This is shown 
in Figure 1.  Using this relationship, several coefficients 
can be encoded using a single symbol.  Second, 
coefficients are encoded in order of importance using bit 
prioritization.  The embedded coding scheme places the 
most important bits at the beginning of the bit-stream; 
therefore, the encoding or decoding process can 

terminate at any moment and allow a target bit-count or 
distortion metric to be met exactly.  Since higher 
magnitude wavelet coefficients contribute more to the 
overall shape of the reconstructed signal, the EZW 
algorithm uses thresholding to extract larger coefficients 
from the hierarchy.  The smaller coefficients are 
extracted by making multiple passes over the wavelet 
transform coefficients, decreasing the threshold by a 
factor of two with each pass.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1:  Tree-structure relationship between wavelet 
coefficients of different subbands.  The bracketed 
numbers indicate the refinement level.  
 
Standard Wavelet Compression 
     The standard wavelet compression algorithm, 
although significantly less complex than the EZW 
algorithm, cannot encode data to meet a target PRD.  
Data is encoded by zeroing WT coefficients until the 
desired CF is attained.  Since lower magnitude 
coefficients contribute less to the overall shape of the 
signal, coefficients are zeroed in order of increasing 
magnitude, starting with the smallest. 
 

RESULTS 
 
     The described algorithms were implemented in 
Matlab and tested on the steady-state and transient MES 
of four participants.  The effects of data segment length 
and wavelet type on compression were empirically 
assessed.  A trade-off analysis between EZW 
performance and complexity indicated segment lengths 
of 1024 samples were acceptable.  The wavelet type 
analysis indicated no significant dependence of EZW 
performance on wavelet type.  The steady-state and 
dynamic MES data were segmented into windows of 
1024 samples and transformed to their time-frequency 
representation using the discrete Meyer wavelet in the 
WT.  During the initial analysis, the decomposition 
depth was varied from 3 to 10 (the maximum depth for 
a 1024 sample segment).  However, a comparison of the 

MES Segment

Approximation(4)

Detail(4)

Detail(3)

Detail(2)

Detail(1)

Proceedings – 23rd Annual Conference – IEEE/EMBS Oct.25-28,  2001,  Istanbul,  TURKEY 

 



compressed signals across all depths indicated no 
dependence of compression performance on 
decomposition depth; therefore, to reduce computational 
time a level 5 decomposition was chosen.   
     The WT coefficients were compressed to CFs 
ranging from 60% to 95%.  The PRDs between the 
original and decompressed signals were compared 
across algorithms.  Figures 2 and 3 illustrate PRD 
variation with CF for the steady-state and dynamic 
MES. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:  A comparison of EZW and standard wavelet 
compression performance when applied to the steady-
state MES. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3:  A comparison of EZW and standard wavelet 
compression performance when applied to the dynamic 
MES. 
 
Results similar to those presented in Figures 2 and 3 
were obtained for the other two participants. 
     To assess whether steady-state or dynamic MES data 
were more easily compressed, the PRD vs. CF curves 
for both types of MES were compared.  The results of 

the EZW compression algorithm, when applied to the 
steady-state and dynamic MES obtained from the same 
subjects presented in Figures 2 and 3, are shown in 
Figure 4.         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4:  Comparison of steady-state and dynamic 
MES compression using EZW algorithm. 
 
     A comparison of computational complexity between 
the EZW and standard wavelet compression algorithms 
was also performed.  Complexity was measured by 
counting the number of floating point operations 
(FLOPs) required to compress 20 seconds of MES.  
Figure 5 illustrates the variation of FLOP count with CF 
for the EZW and standard wavelet compression 
algorithms when applied to the steady-state MES of one 
subject. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5:  Computational complexity of EZW and 
standard wavelet compression algorithms when applied 
to 20 seconds of steady-state MES.     
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DISCUSSION 
 
     A comparison of the PRD vs. CF curves in Figures 2 
and 3 shows that the EZW algorithm gives better results 
than the standard wavelet compression algorithm when 
applied to both the steady-state and dynamic MES data.  
For all CFs the EZW algorithm produced decompressed 
signals that, when compared to the original signals, gave 
PRD values that were substantially lower than those 
resulting from the standard wavelet compression 
algorithm.  The main reason for this difference can be 
attributed to the nature of the EZW encoding.  The 
EZW algorithm exploits the hierarchy of the WT 
coefficients and links coefficients from different 
subbands using a tree structure.  This tree structure 
allows multiple coefficients to be encoded using a single 
symbol.  When this encoding is coupled with bit 
prioritization, the most significant bits of the 
coefficients with the greatest magnitude are placed in 
the bit stream first.  This method of encoding permits 
the storage or transmission of a larger quantity of 
information using fewer bits.   
     Although the comparison between the steady-state 
and dynamic MES presented in Figure 4 indicates 
steady-state MES compresses better than dynamic MES, 
this was not so for the other the other two participants.  
For all participants the steady-state MES compressed as 
well as, and sometimes better than, the dynamic MES.  
It was originally hypothesized that the dynamic MES 
would compress more efficiently than the steady-state 
MES due to the higher degree of redundancy present in 
the dynamic MES generated by a cyclic contraction.  
Since improved compression performance of the 
dynamic MES over the steady-state MES was not 
observed, it is speculated that compression may be more 
subject dependant than MES type dependant.    
     The comparison of the computational complexity for 
the two compression algorithms shown in Figure 5, 
clearly indicates that EZW encoding is computationally 
expensive, regardless of the CF.  The decreasing FLOP 
count with increasing CF is the result of reduced data 
processing associated with higher degrees of 
compression.            
 

CONCLUSION 
 
     This research investigated MES compression using 
the EZW encoding algorithm, and compared its 
performance to a standard wavelet compression 
algorithm.  The results clearly indicate a trade-off 
between computational complexity and decompressed 
signal distortion.  Although the EZW algorithm 
compresses the MES with considerably less loss than 
the standard wavelet compression algorithm, it is 
computationally more expensive in terms of FLOPs. It 
is surmised that the compressibility of steady-state and 

dynamic MES data is more subject dependant than MES 
type dependant, since no relationship between 
compression performance and MES type could be 
established. 
     The results of this investigation indicate the choice 
of an appropriate MES compression algorithm is highly 
dependent on the application.  However, if a target 
distortion metric is to be used as the stopping criteria for 
encoding or decoding, the EZW algorithm is the 
suitable choice, as this property is not easily 
implemented with other compression algorithms.   
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